

Tetrahedron 59 (2003) 5563-5568

TETRAHEDRON

Selective functionalization at the small rim of calix[6]arene. Synthesis of novel non-symmetrical N_3 , N_4 and N_3 ArO biomimetic ligands

Olivier Sénèque and Olivia Reinaud*

Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR CNRS 8601, Université René Descartes, 45 rue des Saints-Pères, 75270 Paris cedex 06, France

Received 10 March 2003; accepted 20 May 2003

Abstract—Eight novel calix[6]arene-based biomimetic ligands for transition metal ions have been synthesized. They display a nonsymmetrical N_3 , N_4 or N_3 ArO binding core that mimics enzyme active sites presenting histidine and tyrosine residues. The key step for their synthesis is the mono-alkylation at the small rim of the C_{3v} symmetrical trimethyl ether derivative of *t*Bu-calix[6]arene with *N*-Boc-2chloroethylamine to yield a novel calix[6]arene synthon. Its combined *O*-alkylation with a chloromethyl aromatic amine and *N*-deprotection or alkylation or reductive alkylation with a salicylaldehyde derivative yielded the calix[6]arene-based ligands with mixed *N/O* donors. © 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

We are involved in a research program devoted to the modeling of metallo-enzyme active sites with supramolecular systems. In the recent years, we have shown that calix[6]arenes can be used as a platform for the preorganization of a metal ion binding site in close proximity of a hydrophobic cavity. For that purpose, selective alternate alkylation of three out of the six phenolic units of the calix[6] arene was the key step for obtaining a variety of C_{3v} symmetrical N_3 ligands.^{1,2} Because of the great diversity of metallo-enzyme active sites, we were interested in developing a novel synthetic strategy allowing the disymetrisation of the calix[6]arene-based system.³ Therefore, we explored the selective functionalization of the C_{3v} tris(methylated)calixarene X₆Me₃H₃ and found a novel procedure giving rise to its monoalkylation with an aminoprotected group. This key step allowed us to synthesize within 3 or 4 steps starting from X₆Me₃H₃ non-symmetrical N_3 , N_4 and N_3 ArO ligands.

2. Results

2.1. Selective functionalization of calix[6]arene X₆Me₃H₃

The synthesis of C_{3v} symmetric N_3 calix[6]arene-based ligands were achieved by per-alkylation of the 1,3,5-

trimethylether of *t*Bu-calix[6]arene X₆Me₃H₃ using various alkyl chloride (2-chloromethyl-*N*-methylimidazole, 2-chloromethyl-*N*-methylbezimidazole, *N*-chloromethylpyrazole, 2-chloromethylpyridine, *N*,*N*-dimethyl-2-chloroethylamine) in the presence of excess NaH^{1,4} or K₂CO₃,² in THF/DMF or DMF, respectively. When the calixarene was reacted with only a stoichiometric amount of the abovementioned alkylating agent and/or base, the tris(alkylated) compound X₆Me₃N₃ remained by far the major product and a sizeable part of X₆Me₃H₃ was recovered. The mono- and di-alkylated products were formed only in very small amounts.

In strong contrast with these results, when the Boc-protected chloroethylamine was used as an electrophilic agent, partially alkylated compounds were obtained as major products and peralkylation of X₆Me₃H₃ revealed itself to be a minor process. Thus, optimization of the reaction conditions, thanks to a careful control of both the reaction conditions and the relative stoichiometric quantities of each reagent, led to an efficient procedure for the preparation of a novel non-symmetrical calix[6]arene synthon. When X₆Me₃H₃ was reacted with ClCH₂CH₂NHBoc⁵ (5 equiv.) and NaH (3.2 equiv.) in a THF/DMF 5:1 mixture, calix[6]arene X₆Me₃H₂(NHBoc) was obtained with a 75% yield based on converted X₆Me₃H₃ (Scheme 1). Column chromatography allowed its separation from the di-alkylated product $X_6Me_3H(NHBoc)_2$ and the tri-alkylated product X₆Me₃H(NHBoc)₃ (identified by ES-MS) that were formed in only small amounts. The ¹H NMR spectrum of $X_6Me_3H_2(NHBoc)$ is characteristic of a C_8 -symmetrical species with the methoxy groups rejected out of the calixarene cavity (δ_{OMe} =3.40 and 3.88 ppm) and the

Keywords: calix[6]arene; selective alkylation; biomimetic; mixed *N/O*-ligand.

^{*} Corresponding author. Tel.: +33-1-42862183; fax: +33-1-42868387; e-mail: reinaud@biomedicale.univ-paris5.fr

Scheme 1. Selective functionalization of X₆Me₃H₃. Conditions: NaH (3.2 equiv.), ClCH₂CH₂NHBoc (5 equiv.), THF/DMF 4:1, reflux, 6 h.

 OC_2H_4NHBoc arm partially included in the π -basic cavity ($\delta_{OCH_2}=2.55$ ppm). The ¹³C NMR resonances for the bridging methylene ($\delta_{ArCH2Ar}\approx 29-32$ ppm)⁶ and a ROESY experiment confirmed that this new compound actually adopts a flattened cone conformation where the relative in and out positions of the phenolic units are the

opposite of what was observed for the tri-alkylated N_3 products.¹

2.2. Non-symmetrical N₃ and N₄ ligands

Preparation of the non-symmetrical N_3 ligand

X₆Me₃Imme₂NHImme

Scheme 2. Synthesis of N_3 and N_4 ligands. *Conditions*: (i) NaH (4.55 equiv.), 2-chloromethyl-1-methylimidazole hydrochloride (2.5 equiv.), THF/DMF 5:1, reflux, 3 h; (ii) K₂CO₃ (16 equiv.), 2-chloromethylpyridine hydrochloride (6.3 equiv.), DMF, 150°C, 5 h; (iii) CHCl₃/CF₃COOH 5:1, 25°C, 1 h; (iv) NaH (15 equiv.), 2-chloromethyl-1-methylimidazole hydrochloride (5 equiv.), THF/DMF 4:1, reflux, 5 h; (v) CHCl₃/CF₃COOH 20:1, 25°C, 3 h.

 $X_6Me_3Imme_2NH_2$, bearing one aliphatic primary amine and two imidazole moieties, was achieved by reacting X_6Me_3 - $H_2(NHBoc)$ in a THF/DMF mixture with 2-chloromethyl-1methylimidazole hydrochloride (2.5 equiv.) and NaH (4.55 equiv.).⁷ The pyridine analog $X_6Me_3Pic_2NH_2$ was synthesized in DMF with 2-chloromethylpyridine hydrochloride and K_2CO_3 in excess as a base instead of NaH.⁸ After treatment with trifluoroacetic acid, $X_6Me_3Imme_2NH_2$ and $X_6Me_3Pic_2NH_2$ were obtained in 83 and 63% yields, respectively (Scheme 2).

Reaction of $X_6Me_3H_2(NHBoc)$ with an excess of 2-chloromethyl-1-methylimidazole hydrochloride and NaH in a THF/DMF mixture led to the alkylation of both phenolic functions and the NHBoc moiety. After treatment with trifluoroacetic acid new compound $X_6Me_3Imme_2NHImme$ was obtained in 91% yield (Scheme 2).

2.3. N₃ArO ligands

A family of N_3 ArO ligands were prepared by reductive amination of X_6 Me₃Imme₂NH₂ and X_6 Me₃Pic₂NH₂ using various salicylaldehydes and NaBH₄ as the reducing agent in EtOH. Ligands X_6 Me₃Imme₂NHAr^{R,R'}OH and X_6 Me₃. Pic₂NHAr^{*t*Bu₂}OH were obtained in 50–76% yield according to Scheme 3. Finally, a ligand presenting a tertiary amine moiety in place of the secondary amine function was synthesized.⁹ Indeed, X_6 Me₃Imme₂NHAr^{*t*Bu₂}OH was quantitatively converted into X_6 Me₃Imme₂NPrAr^{*t*Bu₂}OH, bearing a *N*-propyl amino-phenol arm, by reductive amination using EtCHO and NaBH₃CN in EtOH. The ¹H NMR spectra of all these new ligands present a classical flattened C_s cone conformation with their methoxy groups folded into the π -basic cavity.

3. Discussion-conclusion

Whereas the reaction of X₆Me₃H₃ with various alkyl chlorides bearing amino groups yielded the tris-alkylated compound as a major product, it was possible to implement selective mono-alkylation with an aminoethyl group protected as a carbamate. According to our experiments, it seems likely that per-alkylation of X₆Me₃H₃ undergoes a cooperative process, whereby the introduction of a second then a third basic group (i.e. an amine) on the calixarene skeleton is due to auto-catalysis. Masking the basicity of the amino arm with a sterically encumbered Boc protecting group may well be the key for the exceptional selectivity observed for the mono-alkylation with the chloroethylamine derivative. The mono-alkylated calix[6]arene X₆Me₃H₂-(NHBoc) revealed to be a key synthon. Indeed, it can be further functionalized on the phenol and/or the amino moieties. This allowed us to synthesize a new set of nonsymmetrical N_3 , N_4 and N_3 ArO calix[6]arene-based ligands, that can closely mimic the coordination sphere found in some enzymes. For example, the N_3 ArO ligands now present a phenol group that can model the tyrosine residue encountered in galactose oxidase.¹⁰ The various donor strength and steric hindrance provided by this novel family of biomimetic ligands should also allow the tuning of the properties of the corresponding metal complexes.

X₆Me₃Pic₂NHAr^{tBu₂}OH

Scheme 3. Synthesis of N_3 O ligands. *Conditions*: (i) 2-hydroxy-3-R'-5-R-benzaldehyde (excess), EtOH, 25°C, 1 h, NaBH₄ (excess), 25°C, 1 h; (ii) EtCHO (6 equiv.), NaBH₃CN (2 equiv.), EtOH, 25°C, 1 h.

Complexation studies with these ligands will be reported elsewhere.

4. Experimental

4.1. General

All solvents and reagents were obtained commercially. DMF was stored over 4 Å molecular sieves under argon. THF was distilled under argon over sodium/benzophenone. ¹H and ¹³C NMR spectra were recorded on Bruker Avance 400 and Bruker ARX 250 spectrometers. ¹H and ¹³C resonances corresponding to anisole moieties are noted 1 (e.g. tBu^1 , ArH¹, C¹_{Ar}) and the others are noted 2. They were assigned with HMBC and HMQC experiments. IR spectra were recorded on a Perkin–Elmer 783 spectrometer. Elemental analyses were performed at the Institut de Chimie des Substances Naturelles, France.

4.1.1. 5,11,17,23,29,35-Hexa-tert-butyl-37,39,41-trimethoxy-38-[2-[[(tert-butyloxy)carbonyl]-amino]ethoxy]-calix[6]arene-40,42-diol [X₆Me₃H₂(NHBoc)]. Under an argon atmosphere, NaH (60% in oil, 252 mg, 6.3 mmol) and DMF (20 mL) were added to a solution of (5,11,17,23,29,35-hexa-tert-butyl-37,39,41-tri-X₆Me₃H₃ methoxycalix[6]arene-38,40,42-triol)¹¹ (2.0 g, 1.97 mmol) in THF (80 mL). The reaction mixture was stirred for 30 min at room temperature and ClCH₂CH₂NHBoc⁵ (1.77 g, 9.8 mmol) was introduced. After 6 h of refluxing, the solvent was concentrated under reduced pressure to a quarter of the volume and water (100 mL) was poured into the solution. The resulting precipitate was collected by filtration and dissolved in CH₂Cl₂. The organic layer was washed with water, dried (Na₂SO₄) and evaporated under reduced pressure. Pentane was added to the yellow residue. A white precipitate of non converted X₆Me₃H₃ appeared and was filtered off. The filtrate was evaporated under reduced pressure. Column chromatography on silica gel using CH₂Cl₂/AcOEt 97:3 as the eluent yielded X₆Me₃H₂-(NHBoc) as a white powder (1.42 g). Yield: 75% (based on 82% converted X₆Me₃H₃). Mp: 165°C. IR (KBr): v=1720 (C=O), 1535, 1515, 1488, 1440, 1420, 1398, 1365, 1295, 1250 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ=0.57 (s, 9H, *t*Bu¹), 1.02 (s, 18H, *t*Bu¹), 1.25 (s, 18H, *t*Bu²), 1.38 (s, 9H, *t*Bu²), 1.47 (s, 9H, O*t*Bu), 2.55 (s, 4H, OCH₂+NCH₂), 3.40 (s, 3H, OCH₃), 3.45 (d, J=14 Hz, 2H, Ar- α CH_{eq}), 3.55 (d, J=14 Hz, 2H, Ar- α CH_{eq}), 3.62 (d, J=14 Hz, 2H, Ar- α CH_{eq}), 3.88 (s, 3H, OCH₃), 4.22 (d, J=14 Hz, 2H, Ar- α CH_{ax}), 3.45 (d, J=14 Hz, 2H, Ar- α CH_{eq}), 4.28 (d, J=14 Hz, 2H, Ar- α CH_{ax}), 4.64 (d, J=14 Hz, 2H, Ar-αCH_{ax}), 5.53 (s, 1H, NH), 6.17 (s, 2H, ArH¹), 6.93 (d, J=2.0 Hz, 2H, ArH¹), 6.94 (d, J=2.3 Hz, 2H, ArH²), 6.98 (d, J=2.0 Hz, 2H, ArH¹), 7.17 (d, J=2.3 Hz, 2H, ArH²), 7.27 (s, 2H, ArH²), 7.43 (s, 2H, OH). ¹³C NMR (100 MHz, CDCl₃): δ =28.7 (OC(CH₃)₃), 29.0 (Ar- α CH₂), 30.7 $(Ar-\alpha CH_2)$, 31.2 $(C(CH_3)_3)$, 31.6 $(C(CH_3)_3)$, 32.0 $(Ar-\alpha CH_2)$, 33.7 $(OC(CH_3))$, 33.9 $(C(CH_3)_3)$, 34.2 (C(CH₃)₃), 40.2 (NCH₂), 59.8 (OCH₃), 61.6 (OCH₃), 73.3 (OCH₂), 124.1 (C_{Ar}H), 124.2 (C_{Ar}H), 124.8 (C_{Ar}H), 125.5 (C_{Ar}H), 126.1 (C_{Ar}-CH₂), 126.2 (C_{Ar}-CH₂), 126.7 (C_{Ar}H), 127.8 (C_{Ar}H), 131.9 (C_{Ar}-CH₂), 132.2 (C_{Ar}-CH₂), 133.1 (C_{Ar}-CH₂), 133.3 (C_{Ar}-CH₂), 142.2 (C_{Ar}), 145.7 (C_{Ar}),

145.8 (C_{Ar}), 147.2 (C_{Ar}), 150.6 (C_{Ar} O), 151.3 (C_{Ar} O), 153.2 (C_{Ar} O), 153.3 (C_{Ar} O), 156.7 (C=O). Anal. calcd for $C_{76}H_{103}NO_8$: C 78.78, H 8.96, N 1.21; found C 78.74, H 9.01, N 1.18.

4.1.2. 5,11,17,23,29,35-Hexa-tert-butyl-37,39,41-trimethoxy-38-[2-(amino)ethoxy]-40,42-bis[(1-methyl-2imidazolyl)methoxy]calix[6]arene (X₆Me₃Imme₂NH₂). Under an argon atmosphere, 2-chloromethyl-1-methylimidazole hydrochloride¹² (505 mg, 3.02 mmol) was introduced into a solution of X₆Me₃H₂(NHBoc) (1.40 g, 1.21 mmol) in THF (60 mL). NaH (60% in oil, 220 mg, 5.5 mmol) and DMF (12 mL) were added to the reaction mixture. After 3 h on refluxing, the solvent were concentrated under reduced pressure to a quarter of the volume and water (100 mL) was poured into the solution. The resulting precipitate was collected by filtration and dissolved in CH₂Cl₂. The organic layer was washed with water, dried (Na₂SO₄) and evaporated under reduced pressure. The residue was dissolved in a CHCl₃/CF₃COOH 5:1 mixture (12 mL). The solution was stirred for 1.5 h and evaporated under reduced pressure. The oily residue was dissolved in CH₂Cl₂. The organic layer was washed with 1N NaOH, dried (Na₂SO₄) and evaporated under reduced pressure. Recrystallization in CH₂Cl₂/CH₃CN yielded X₆Me₃Imme₂-NH₂ as a white powder (1.1 g). Yield: 83%. Mp: 177°C. IR (KBr): v=1500, 1481, 1479, 1468, 1465, 1454, 1414, 1392, 1362, 1292, 1285, 1245 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ=0.82 (s, 27H, *t*Bu), 1.34 (s, 18H, *t*Bu), 1.37 (s, 9H, *t*Bu), 2.14 (s, 3H, OCH₃), 2.31 (s, 6H, OCH₃), 2.99 (br t, 2H, NCH₂CH₂O), 3.23 (d, J=14.8 Hz, 2H, Ar-αCH_{eq}), 3.27 (d, J=14.8 Hz, 2H, Ar- α CH_{eq}), 3.50 (d, J=14.8 Hz, 2H, Ar-\alphaCHeq), 3.77 (br t, 2H, OCH2CH2N), 3.88 (s, 6H, NCH₃), 4.3–4.5 (m, 6H, Ar-αCH_{ax}), 5.02 (s, 4H, OCH₂Im), 6.66 (s, 2H, ArH), 6.68 (s, 4H, ArH), 6.91 (s, 2H, ImH), 6.99 (s, 2H, ImH), 7.20 (s, 2H, ArH), 7.23 (s, 2H, ArH). Anal. calcd for C₈₁H₁₁₁N₅O₈·2H₂O C 75.84, H 8.72, N 5.46; found C 75.74, H 8.74, N 5.54.

4.1.3. 5,11,17,23,29,35-Hexa-tert-butyl-37,39,41-trimethoxy-38-[2-(amino)ethoxy]-40,42-bis[(2-pyridinyl)methoxy]calix[6]arene (X₆Me₃Pic₂NH₂). Under an argon atmosphere, 2-chloromethylpyridine hydrochloride (1.05 g, 6.4 mmol) and K₂CO₃ (2.2 g, 16 mmol) were introduced into a solution of X₆Me₃H₂(NHBoc) (1.86 g, 1.6 mmol) in DMF (100 mL). The mixture was stirred for 3 h at 150°C. The solvent was evaporated under reduced pressure. The residue was dissolved in Et₂O. The organic solution was washed once with water, twice with brine and once with water, dried (Na₂SO₄) and evaporated under reduced pressure. The residue was dissolved in a CHCl₃/CF₃COOH 5:1 mixture (48 mL). The solution was stirred for 1 h and evaporated under reduced pressure. The oily residue was dissolved in CH₂Cl₂. The organic solution was washed with 1N aq. NaOH, dried (Na₂SO₄) and evaporated under reduced pressure. Trituration in pentane yielded X₆Me₃- Pic_2NH_2 as a white powder (1.31 g). Yield: 67%. Mp: 234°C. IR (KBr): v=1593, 1481, 1435, 1393, 1362, 1291, 1244 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ =0.88 (s, 27H, tBu), 1.32 (s, 18H, tBu), 1.38 (s, 9H, tBu), 2.28 (s, 3H, OCH₃), 2.43 (s, 6H, OCH₃), 2.96 (br, 2H, NCH₂CH₂), 3.2-4.8 (br m, 14H, Ar- α CH_{eq}+Ar- α CH_{ax}+OCH₂CH₂), 5.10 (s, 4H, OCH₂Py), 6.74 (s, 4H, ArH), 6.80 (s, 2H, ArH), 7.1-7.4

(m, 7H, ArH+PyH), 7.76 (br t, 1H, PyH), 7.89 (br d, 1H, PyH), 8.57 (d, J=4.6 Hz, 1H, PyH). Anal. calcd for C₈₃H₁₀₅N₃O₆: C 80.35, H 8.53, N 3.39; found C 80.07, H 8.79, N 3.45.

4.1.4. 5,11,17,23,29,35-Hexa-tert-butyl-37,39,41-trimethoxy-38-[2-[[(1-methyl-2-imidazolyl)methyl]amino]ethoxy]-40,42-bis[(1-methyl-2-imidazolyl)methoxy]calix[6]arene (X₆Me₃Imme₂NHImme). Under an argon atmosphere, X₆Me₃H₂(NHBoc) (400 mg, 0.345 mmol) was added to a suspension of NaH (60% in oil, 5,18 mmol) in THF (20 mL). After 15 min on stirring, DMF (5 mL) was added, followed 15 min later by 2-chloromethyl-1-methylimidazole hydrochloride¹² (346 mg, 2,07 mmol). After 5 h on refluxing, the solvent were concentrated under reduced pressure to a quarter of the volume and water (50 mL) was poured into the solution. The resulting precipitate was collected by filtration and dissolved in CH₂Cl₂. The organic layer was washed with water, dried (Na₂SO₄) and evaporated under reduced pressure. The residue was dissolved in a CH₂Cl₂/CF₃COOH 20:1 mixture (10.5 mL). The solution was stirred for 3 h and evaporated under reduced pressure. The oily residue was dissolved in CH₂Cl₂. The organic layer was washed once with 1N NaOH and twice with H₂O, dried over (Na₂SO₄) and evaporated under reduced pressure. Trituration in pentane yielded X6Me3-Imme₂NHImme as a white powder (435 mg). Yield: 91%. Mp: 173°C (dec.). IR (KBr): v=1505, 1488, 1470, 1462, 1420, 1399, 1365, 1290 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ=0.76 (s, 9H, tBu), 0.78 (s, 18H, tBu), 1.37 (s, 27H, tBu), 2.16 (s, 9H, OCH₃), 3.08 (br t, 2H, NCH₂CH₂O), 3.21 (d, J=15 Hz, 4H, Ar- α CH_{eq}), 3.38 (d, J=15 Hz, 2H, ArαCH_{eq}), 3.69 (s, 3H, NCH₃), 3.89 (s, 6H, NCH₃), 3.99 (br t, 2H, OCH₂CH₂N), 4.01 (s, 2H, NCH₂Im), 4.46 (d, J=15 Hz, 4H, Ar- α CH_{ax}), 4.54 (d, J=15 Hz, 2H, Ar- α CH_{ax}), 5.02 (s, 4H, OCH₂Im), 6.60 (s, 2H, ArH), 6.64 (s, 4H, ArH), 6.82 (s, 1H, ImH), 6.92 (s, 3H, ImH), 6.98 (s, 2H, ImH), 7.23 (s, 6H, ArH). Anal. calcd for C₈₆H₁₁₃N₇O₆·0.5H₂O: C 76.52, H 8.51, N 7.26; found C 76.78, H 8.56, N 6.74.

4.1.5. 5,11,17,23,29,35-Hexa-tert-butyl-37,39,41-trimethoxy-38-[2-[[(5-nitro-2-hydroxy)benzyl]amino]ethoxy]-40,42-bis[(1-methyl-2-imidazolyl)methoxy]calix[6]arene (X₆Me₃Imme₂NHAr^{NO2}OH). 2-Hydroxy-5nitro-benzaldehyde (100.5 mg, 0.60 mmol) was introduced into a solution of X₆Me₃Imme₂NH₂ (500 mg, 0.40 mmol) in EtOH (50 mL). The yellow mixture was stirred for 1 h at room temperature. NaBH₄ (30.3 mg, 0.80 mmol) was added at 0°C. The solution was stirred for 1 h at room temperature. 1N aq. HCl was added until a white precipitate was formed. The suspension was stirred for 5 min and 1N aq. NaOH was added (pH \approx 11–12). The suspension was extracted with AcOEt. The organic layer was washed with H₂O, dried (Na_2SO_4) and evaporated under reduced pressure. Recrystallization in CH₂Cl₂/pentane yielded X₆Me₃Imme₂-NHAr^{NO2}OH as a yellow powder (384 mg). Yield: 73%. Mp: 184°C. IR (KBr): ν =1589 (NO₂), 1499, 1492, 1480, 1450, 1414, 1392, 1362, 1285, 1235 cm^{-1} . ¹H NMR (250 MHz, CDCl₃): δ =0.79 (s, 27H, *t*Bu), 1.36 (s, 27H, tBu), 2.19 (s, 9H, OCH₃), 3.07 (br t, 2H, NCH₂CH₂), 3.23 (d, J=15.5 Hz, 4H, Ar-αCH_{eq}), 3.40 (d, J=15.5 Hz, 2H, ArαCH_{eq}), 3.88 (s, 6H, NCH₃), 4.00 (br t, 2H, OCH₂CH₂), 4.23 (s, 2H, NCH₂), 4.45 (d, J=15.5 Hz, 4H, Ar-αCH_{ax}), 4.50 (d, J=15.5 Hz, 4H, Ar-αCH_{ax}), 5.03 (s, 4H, OCH₂Im), 6.64 (s, 4H, ArH), 6.67 (s, 2H, ArH), 6.84 (d, J=8.8 Hz, 1H, Ar^{OH}-*o*-H), 6.92 (s, 2H, ImH), 6.98 (s, 2H, ImH), 7.24 (s, 6H, ArH), 8.01 (d, J=2.8 Hz, 1H, Ar^{OH}-*m*'-H), 8.06 (dd, ³J=8.8 Hz, ⁴J=2.8 Hz, 1H, Ar^{OH}-*m*-H). Anal. calcd for C₈₈H₁₁₂N₆O₉·H₂O: C 74.65, H 8.12, N 5.94; found C 74.78, H 7.97, N 5.76.

4.1.6. 5,11,17,23,29,35-Hexa-tert-butyl-37,39,41-trimethoxy-38-[2-[[(3,5-di-tert-butyl-2-hydroxy)benzyl]amino]-ethoxy]-40,42-bis[(1-methyl-2-imidazolyl)methoxy]calix[6]arene (X₆Me₃Imme₂NHAr^{tBu₂}OH). The title compound was synthesized from X₆Me₃Imme₂NH₂ (890 mg, 0.71 mmol) following the procedure described for X₆Me₃Imme₂NHAr^{NO2}OH with EtOH (50 mL), 2-hydroxy-3,5-di-tert-butyl-benzaldehyde (251 mg, 1.07 mmol) and NaBH₄ (54 mg, 1.42 mmol). Work-up with CH₂Cl₂ and recrystallization in acetonitrile yielded X₆Me₃Imme₂-NHAr^{tBu2}OH as a white powder (810 mg). Yield: 76%. Mp: 239°C. IR (KBr): v=1500, 1492, 1480, 1452, 1414, 1414, 1392, 1362, 1287, 1245 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ=0.76 (s, 9H, tBu), 0.79 (s, 18H, tBu), 1.27 (s, 9H, tBu), 1.37 (s, 27H, tBu), 1.39 (s, 9H, tBu), 2.15 (s, 3H, OCH₃), 2.17 (s, 6H, OCH₃), 3.10 (br t, 2H, NCH₂CH₂), 3.21 $(d, J=14.6 \text{ Hz}, 4\text{H}, \text{Ar}-\alpha \text{CH}_{eq}), 3.41 (d, J=14.7 \text{ Hz}, 2\text{H}, \text{Ar}-\alpha \text{CH}_{eq})$ αCH_{eq}), 3.89 (s, 6H, NCH₃), 4.03 (br t, 2H, OCH₂CH₂), 4.10 (s, 2H, NCH₂Im), 4.45 (d, J=14.6 Hz, 4H, Ar- α CH_{ax}), 4.52 (d, *J*=14.7 Hz, 2H, Ar-αCH_{ax}), 5.01 (s, 4H, OCH₂Im), 6.61 (s, 2H, ArH), 6.65 (s, 4H, ArH), 6.89 (d, J=2 Hz, 1H, Ar^{OH}H), 6.91 (s, 2H, ImH), 6.97 (d, J=1.2 Hz, 2H, ImH), 7.21 (d, J=2 Hz, 1H, Ar^{OH}H), 7.23 (s, 2H, ArH), 7.24 (s, 4H, ArH). Anal. calcd for C₉₆H₁₃₁N₅O₈·H₂O: C 77.74, H 8.90, N 4.72; found C 77.48, H 9.02, N 4.74.

4.1.7. 5,11,17,23,29,35-Hexa-tert-butyl-37,39,41-trimethoxy-38-[2-[[(5-methoxy-2-hydroxy)benzyl]amino]ethoxy]-40,42-bis[(1-methyl-2-imidazolyl)methoxy]calix[6]arene (X6Me3Imme2NHArOMeOH). The title compound was synthesized from X₆Me₃Imme₂NH₂ (500 mg, 0.40 mmol) following the procedure described $X_6Me_3Imme_2NHAr^{NO2}OH$ with EtOH (50 mL), for 2-hydroxy-5-methoxy-benzaldehyde (0.10 mL, 0.80 mmol) and NaBH₄ (45.4 mg, 1.2 mmol). Work-up with CH₂Cl₂ and recrystallization in CH₂Cl₂/pentane yielded X₆Me₃-Imme₂NHAr^{OMe}OH as a white powder (384 mg). Yield: 69%. Mp: 180°C. IR (KBr): v=1500, 1492, 1480, 1452, 1414, 1392, 1362, 1287, 1245 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ=0.78 (s, 27H, tBu), 1.37 (s, 27H, tBu), 2.17 (s, 9H, OCH₃), 3.07 (br t, 2H, NCH₂CH₂), 3.22 (d, J=15.4 Hz, 4H, Ar-αCH_{eq}), 3.40 (d, J=14.8 Hz, 2H, Ar-αCH_{eq}), 3.73 (s, 3H, p-OCH₃-Ar^{OH}), 3.89 (s, 6H, NCH₃), 4.01 (br t, 2H, OCH₂CH₂), 4.11 (s, 2H, NCH₂), 4.45 (d, J=15.5 Hz, 4H, Ar- α CH_{ax}), 4.51 (d, J=15.5 Hz, 2H, Ar- α CH_{ax}), 5.02 (s, 4H, OCH₂Im), 6.64 (s, 7H, ArH+Ar^{OH}H), 6.74 (m, 2H, Ar^{OH}H), 6.92 (s, 2H, ImH), 6.98 (s, 2H, ImH), 7.23 (s, 2H, ArH), 7.24 (s, 4H, ArH). Anal. calcd for C₈₉H₁₁₅N₅O₈·H₂O: C 76.30, H 8.42, N 5.00; found C 76.59, H 8.46, N 4.84.

4.1.8. 5,11,17,23,29,35-Hexa-*tert*-butyl-37,39,41-trimethoxy-38-[2-[[(3,5-di-*tert*-butyl-2-hydroxy)benzyl]amino]-ethoxy]-40,42-bis[(2-pyridinyl)methoxy]calix[6]arene ($X_6Me_3Pic_2NHAr^{rBu_2}OH$). The title compound was synthesized from $X_6Me_3Pic_2NH_2$ (336 mg, 0.27 mmol)

following the procedure described for X₆Me₃Pic₂-NHArNO2OH with EtOH (20 mL), 2-hydroxy-3,5-di-tertbutyl-benzaldehyde (76 mg, 0.32 mmol) and NaBH₄ (20 mg, 540 mmol). Work-up with CH₂Cl₂ and purification by column chromatography on silica gel using $C_6H_{12}/$ AcOEt 85:15 as the eluent yielded X₆Me₃Pic₂NHAr^{tBu2}OH as a white powder (200 mg). Yield: 50%. Mp: 144°C. IR (KBr): $\nu = 1594$, 1482, 1435, 1392, 1362, 1291, 1291, 1238 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ=0.79 (s, 9H, tBu), 0.83 (s, 18H, tBu), 1.25 (s, 9H, tBu), 1.37 (s, 36H, tBu), 2.15 (s, 3H, OCH₃), 2.17 (s, 6H, OCH₃), 3.10 (br m, 1H, NCHH'CH₂O), 3.42 (d, J=15 Hz, 6H, Ar-αCH_{eq}), 4.05 (br m, 2H, NCHH'CH₂O+NCH₂CHH'O), 4.10 (s, 2H, NCH₂ArOH), 4.22 (br m, 1H, NCH₂CHH'O), 4.53 (d, J=15 Hz, 2H, Ar- α CH_{ax}), 4.60 (d, J=15 Hz, 4H, ArαCH_{ax}), 5.10 (s, 4H, OCH₂Py), 6.67 (s, 2H, ArH), 6.72 (s, 4H, ArH), 6.88 (d, J=2.5 Hz, 1H, Ar^{OH}H), 7.20 (d, J=2.5 Hz, 1H, Ar^{OH}H), 7.22-7.29 (m, 8H, ArH+PyH), 7.80 (br t, 2H, PyH), 7.92 (br d, 2H, PyH), 8.56 (d, J=4.6 Hz, 2H, PyH). Anal. calcd for C₉₈H₁₂₇N₃O₇: C 80.67, H 8.77, N 2.88; found C 80.87, H 9.07, N 2.83.

4.1.9. 5,11,17,23,29,35-Hexa-tert-butyl-37,39,41-trimethoxy-38-[2-[N-[(3,5-di-tert-butyl-2-hydroxy)benzyl],N-propylamino]-ethoxy]-40,42-bis[(1-methyl-2imidazolyl)methoxy]calix[6]arene (X₆Me₃Imme₂-NPrAr^{tBu2}OH). Propionaldehyde (0.12 mL, 1.78 mmol) was introduced into a solution of X₆Me₃Imme₂NHAr^{tBu₂}OH (435 mg, 0.30 mmol) in EtOH (20 mL). After 1 h on stirring at room temperature, NaBH₃CN (37.3 mg, 0.60 mmol) was added and the reaction mixture was stirred for an additional hour. 10 drop of conc. HCl was added and the suspension was stirred for 1 h. 1N aq. NaOH was added (pH \approx 11–12). The suspension was extracted with CH₂Cl₂. The organic layer was washed with H₂O, dried (Na₂SO₄) and evaporated under reduced pressure. Recrystallization in acetonitrile yielded X6Me3Imme2NPrAr1Bu2OH as a white powder (450 mg). Yield: 100%. Mp: 149°C. IR (KBr): v=1500, 1482, 1462, 1412, 1390, 1362, 1286, 1239 cm⁻¹. ¹H NMR (250 MHz, CDCl₃): δ=0.76 (s, 9H, tBu), 0.77 (s, 18H, tBu), 0.92 (t, J=7.3 Hz, 3H, NCH₂CH₂CH₃), 1.25 (s, 9H, tBu), 1.38 (s, 36H, tBu), 1.62 (m, 2H, NCH₂CH₂CH₃), 2.12 (s, 3H, OCH₃), 2.16 (s, 6H, OCH₃), 2.68 (t, J=7.3 Hz, 3H, NCH₂CH₂CH₃), 3.06 (t, J=6.5 Hz, 2H, NCH₂CH₂O), 3.21 (d, *J*=15.0 Hz, 4H, Ar-αCH_{eq}), 3.33 (d, *J*=15.4 Hz, 2H, ArαCH_{eq}), 3.87 (s, 2H, NCH₂Im), 3.89 (s, 6H, NCH₃), 4.00 (t, J=6.5 Hz, 2H, OCH₂CH₂N), 4.45 (d, J=15.0 Hz, 4H, ArαCH_{ax}), 4.50 (d, J=15.4 Hz, 2H, Ar-αCH_{ax}), 5.02 (s, 4H,

OCH₂Im), 6.60 (s, 2H, ArH), 6.62 (s, 4H, ArH), 6.83 (d, J=2.5 Hz, 1H, Ar^{OH}H), 6.91 (s, 2H, ImH), 6.97 (d, J=1.2 Hz, 2H, ImH), 7.17 (d, J=2.5 Hz, 1H, Ar^{OH}H), 7.23 (s, 2H, ArH), 7.24 (s, 4H, ArH). Anal. calcd for C₉₉H₁₃₇N₅O₈·H₂O: C 77.96, H 9.05, N 4.59; found C 77.93, H 9.23, N 4.52.

References

- Sénèque, O.; Rondelez, Y.; Le Clainche, L.; Inisan, C.; Rager, M-N.; Giorgi, M.; Reinaud, O.; Eur, J. Inorg. Chem. 2001, 2597.
- Blanchard, S.; Le Clainche, L.; M-N, R.; Chansou, B.; Tuchagues, J.-P.; Duprat, A. F.; Le Mest, Y.; Reinaud, O. Angew. Chem. Int. Ed. 1998, 37, 2732.
- 3. Compared to calix[4]arenes, calix[6]arenes are much more difficult to selectively functionalize at the small rim. This is not only due to their higher number of phenol units but also to their larger size conferring to their cyclic skeleton an increased flexibility.
- 4. Sénèque, O.; Rager, M-N.; Giorgi, M.; Reinaud, O. J. Am. Chem. Soc. 2000, 6183.
- Krapcho, A. P.; Menta, E.; Oliva, A.; Di Domenico, R.; Fiocchi, L. J. Med. Chem. 1998, 41, 5429.
- Kanamathareddy, S.; Gutsche, C. D. J. Org. Chem. 1994, 59, 3871.
- 7. This corresponds to the quantity required to deprotonate the two phenol units and to neutralize the 2.5 equiv. of 2-chloromethyl-1-methylimidazole hydrochloride.
- 8. With NaH, no alkylated product was formed, which may well be due to degradation of 2-chloromethylpyridine.
- 9. It is known that complexes of some transition metal with secondary amine-based ligands may not be stable toward O₂ and may decompose into complexes where the secondary amine function of the ligand is oxidized into an imine. To avoid this problem, we checked that the N₃ArO ligands could be transformed into ligands with a tertiary amine arm.
- Ito, N. E.; Phillips, S. E. V.; Stevens, C.; Ogel, Z. B.; McPherson, M. J.; Keen, J. N.; Yadav, K. D. S.; Knowles, P. F. *Nature* **1991**, *350*, 87.
- Janssen, R. G.; Verboom, W.; Reinhoudt, D. N.; Casnati, A.; Freriks, M.; Pochini, A.; Uggozoli, F.; Nieto, P. M.; Carramolino, M.; Cuevas, F.; Prado, P.; de Mendoza, J. Synthesis 1993, 380.
- 12. Reese, C. B.; Pei-Zhuo, Z. J. Chem. Soc. Perkin Trans. 1 1993, 19, 2291.